891 research outputs found

    Methylene tetrahydrofolate reductase gene and coronary artery disease

    Get PDF
    Abstract is not provided by the author/publishe

    Advanced solutions for quality-oriented multimedia broadcasting

    Get PDF
    Multimedia content is increasingly being delivered via different types of networks to viewers in a variety of locations and contexts using a variety of devices. The ubiquitous nature of multimedia services comes at a cost, however. The successful delivery of multimedia services will require overcoming numerous technological challenges many of which have a direct effect on the quality of the multimedia experience. For example, due to dynamically changing requirements and networking conditions, the delivery of multimedia content has traditionally adopted a best effort approach. However, this approach has often led to the end-user perceived quality of multimedia-based services being negatively affected. Yet the quality of multimedia content is a vital issue for the continued acceptance and proliferation of these services. Indeed, end-users are becoming increasingly quality-aware in their expectations of multimedia experience and demand an ever-widening spectrum of rich multimedia-based services. As a consequence, there is a continuous and extensive research effort, by both industry and academia, to find solutions for improving the quality of multimedia content delivered to the users; as well, international standards bodies, such as the International Telecommunication Union (ITU), are renewing their effort on the standardization of multimedia technologies. There are very different directions in which research has attempted to find solutions in order to improve the quality of the rich media content delivered over various network types. It is in this context that this special issue on broadcast multimedia quality of the IEEE Transactions on Broadcasting illustrates some of these avenues and presents some of the most significant research results obtained by various teams of researchers from many countries. This special issue provides an example, albeit inevitably limited, of the richness and breath of the current research on multimedia broadcasting services. The research i- - ssues addressed in this special issue include, among others, factors that influence user perceived quality, encoding-related quality assessment and control, transmission and coverage-based solutions and objective quality measurements

    Correlation-aware packet scheduling in multi-camera networks

    Get PDF
    In multiview applications, multiple cameras acquire the same scene from different viewpoints and generally produce correlated video streams. This results in large amounts of highly redundant data. In order to save resources, it is critical to handle properly this correlation during encoding and transmission of the multiview data. In this work, we propose a correlation-aware packet scheduling algorithm for multi-camera networks, where information from all cameras are transmitted over a bottleneck channel to clients that reconstruct the multiview images. The scheduling algorithm relies on a new rate-distortion model that captures the importance of each view in the scene reconstruction. We propose a problem formulation for the optimization of the packet scheduling policies, which adapt to variations in the scene content. Then, we design a low complexity scheduling algorithm based on a trellis search that selects the subset of candidate packets to be transmitted towards effective multiview reconstruction at clients. Extensive simulation results confirm the gain of our scheduling algorithm when inter-source correlation information is used in the scheduler, compared to scheduling policies with no information about the correlation or non-adaptive scheduling policies. We finally show that increasing the optimization horizon in the packet scheduling algorithm improves the transmission performance, especially in scenarios where the level of correlation rapidly varies with time. © 2013 IEEE

    Price-Based Controller for Utility-Aware HTTP Adaptive Streaming

    Get PDF
    HTTP Adaptive Streaming (HAS) permits to efficiently deliver video to multiple heterogenous users in a fully distributed way. This might however lead to unfair bandwidth utilization among HAS users. Therefore, network-assisted HAS systems have been proposed where network elements operate alongside with the clients adaptation logic for improving users satisfaction. However, current solutions rely on the assumption that network elements have full knowledge of the network status, which is not always realistic. In this work, we rather propose a practical network-assisted HAS system where the network elements infer the network link congestion using measurements collected from the client endpoints, the congestion level signal is then used by the clients to optimize their video data requests. Our novel controller maximizes the overall users satisfaction and the clients share the available bandwidth fairly from a utility perspective, as demonstrated by simulation results obtained on a network simulator

    Finite Length Performance of Random Slotted ALOHA Strategies

    Get PDF
    Multiple connected devices sharing common wireless resources might create interference if they access the channel simultaneously. Medium access control (MAC) protocols gener- ally regulate the access of the devices to the shared channel to limit signal interference. In particular, irregular repetition slotted ALOHA (IRSA) techniques can achieve high-throughput performance when interference cancellation methods are adopted to recover from collisions. In this work, we study the finite length performance for IRSA schemes by building on the analogy between successive interference cancellation and iterative belief- propagation on erasure channels. We use a novel combinatorial derivation based on the matrix-occupancy theory to compute the error probability and we validate our method with simulation results

    On the joint source and channel coding of atomic image streams

    Get PDF
    This paper presents an error resilient coding scheme for atomic image bitstreams, as generated by Matching Pursuit encoders. A joint source and channel coding algorithm is proposed, that takes benefit of both the flexibility in the image representation, and the progressive nature of the bitstream, in order to finely adapt the channel rate to the relative importance of the bitstream components. An optimization problem is proposed, and a fast search algorithm determines the best rate allocation for given bit budget and loss process parameters. Simulation results show that the unequal error protection is quite efficient, even in very adverse conditions, and it clearly outperforms simple FEC schemes

    FEC Performances in Multimedia Streaming

    Get PDF
    In this paper, the performances of packet-level media-independent FEC schemes are computed in terms of both packet loss ratio and average burst length of multimedia data after error recovery. The set of equations leading to the analytical formulation of both parameters are first given for a renewal error process. Finally, the FEC performances parameters are computed in the case of a Gilbert-model loss process and compared to experimental data

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    Forward Error Correction for Multipath Media Streaming

    Full text link

    Gene markers and complex disorders: A review

    Get PDF
    • …
    corecore